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Scale invariance and intermittency in a creep-slip model of earthquake faults

Peter Hane#* and Yannis Drossinds
European Commission, Joint Research Centre, 1-21020 Ispra (Va), Italy
(Received 9 February 1999

The dynamics of a generalization of the one-dimensional, spatially discretized Burridge-Knopoff model
(slider-block model is investigated numerically. Plastic deformation of the fault interface is considered in
addition to rigid sliding(creep-slip model The event-size distribution exhibits scale invariange=(L.5), as
does the power spectral density of the intermittent time series of the spatially averaged sliding=at8)(.

A diffusive cellular automaton model that reproduces the algebraic correlations in the event-size distribution in
the presence of dissipation is proposgstL063-651X99)50906-9

PACS numbes): 05.45-a, 46.55+d, 47.20.Ky, 91.30.Px

The suggestion by Bak and Tahgj] that threshold mod- BK model that renders the phenomenological description of
els, based on cellular automatéCA), reproduce the friction consistenf11]. Specifically, fault creep is taken into
Gutenberg-Richter power-law distribution of energy releasediccount by introducing an additional internal variable; under
during earthquakes, triggered considerable interest in simplée imposed tectonic driving, the fault responds by a combi-
models of earthquake dynamics. These CA models describ@ation of rigid translatior{sliding) and plastic displacement
the discrete dynamics of a system that evolves to a scaldirreversible deformation of some boundary layer of the
invariant (in space and timestatistical steady state. Such fault). Herein we show numerically that the introduction of
generic scale invariance has been coined self-organized critplastic deformatiortand hence the introduction of a charac-
cality (SOO [2]. teristic time scale of fault aging due to accommodation of

An alternative approach to earthquake dynamics is base@sperities in the original BK model removes some of the
on a slider-block model, initially proposed by Burridge and Previously mentioned criticisms, and the simulations provide
Knopoff (BK) [3] and reintroduced by Carlson and Langer insight into the associated scaling and intermittency in one-
(CL) [4]. Since then numerous slider-block models havedimensional dynamical systems.
been studied; cf. the extensive reference list in R&f. The In Ref.[11] a set of coupled partial differential equations
standard BK model describes the dynamics of a slowlyfor the shear forcefplastic deformation rat¢sand the slid-
driven slider-block chain in the presence of a nonlinear fric-ing rates were derived. In this work we analyze numerically
tion exhibiting a velocity softening instability. Nakanidis], ~ the dynamics of the corresponding slider-block model. For a
trying to bridge these apparently distinct approaches, proone-dimensional discrete array b blocks, in a spatially
posed a CA version of the CL model, whereas several atdiscretized form(the second order gradient was discretized
tempts have been made to provide a continuum descriptioBy the usual cental, three-point finite difference formula
of SOC[7]. and, expressed in dimensionless form, the dynamics is de-

Numerical solutions of BK-like models have shown thatscribed by 2, coupled ordinary differential equations
the system eventually settles into a periodic state of system-

size earthquakes,9]. Moreover, the use of an artificial ac- 2o ="F— plv(et+au]l, (1a)
celeration term to trigger the dynamics has been questioned

[9,10]; its introduction in numerical simulations is a conse- afi=K(ews 1€ 1—26)—(e+g0+1, (1b
guence of the choice of the dynamic friction forg® creep

region at low velocities The absence of a creep region hasg,, k=2,...No—1, and free boundary condition&

two other consequences: the working point of the system as j N Heree, is the dimensionless sliding rate of blokk
determined by the imposed drivingectonig velocity is in ¢ he'shear forceg, the plastic deformation rate, antithe

the velocity softening region of the friction force, and it ne- gy namic friction force. Apart from the stiffness parameter
cessitates the use of a multivalued friction force at zero Sl'd(which arises from the spatial discretizatiamd the param-

ing velocity. These criticisms have led to questioning thegiers that define the friction force, the model equations de-

relevan f slider-block models and th i — . . .
n?oedgscti gartshgjakbeogynan?iiis and the associated SO%end onv, the tectonic drift velocity, and. The latter, ex-

Since the dynamic friction force is an essential ingreolienpressed in terms of the original parameters is the ratio of the

of all BK-like models, we recently proposed a generalizationnatural frequency of transversal oscillations of individual

: . blocks to the plastic relaxation time; it is a measurétem-
henceforth referred to as creep-slip modef the original ) P . :
( p-slip mg 9 pora) stiffness of the system. The plastic deformation rate is

related to the shear fordg and the yield forcd, according
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Equation (18 expresses the balance of forces, and Eq.
(1b) expresses the time evolution of the driving force; the
first term arises from compression/tension, the second from
elastic shear, the third is th@ssumeg linear force relax-
ation, and the last is the external driving. The original BK
model[3] is recovered by taking, larger than the maximum
friction force. In this case Eq$l) become identical to those
reported in Ref[12].

The discretized equations approximate the original con-
tinuum equations if the characteristic length introduced by
the discretizationK ~*2, is less than the smallest rupture
lengths of interest. However, excessive computation times
render the continuum limitK — ) difficult to attain.

The introduction of plastic deformatiotand the corre-
sponding time scale of fault agipgustifies a three-stage dy-
namic friction law ¢(x): (a) at very low displacement ve-
locities fault accommodation is fast enough to maintain
optimum contact surfacgselocity strengthening (b) at in-
termediate velocities fault accommodation is incomplete be-
cause the fault aging rate is comparable to the displacement
rate (velocity softening; and(c) at high velocities aging be-
comes negligible and inertia dominate®locity strengthen-
ing, again. For the simulations these three stages were ap-
proximated as follows(a) a linear velocity strengthening
region, i.e., a region of positive velocity sensitivit{h) a
region of negative velocity sensitivitfinverse decay and
(c) an inertia regime X— ) with linear positive velocity
sensitivity, again. For the precise functional form cf. Ref.
[13]

We simulated numerically the dynamics of the chains of
No=16, 40, 100, and 250 blocks. The numerical scheme is . .
based on a variable-order, variable-step method implement- F'G- 1. Driving forces(top) and sliding ratesbottom for a
ing the backward differentiation formula. The results to be#0-block chain. The parameters aee-0.05, fma=3, fy=2, v
reported refer to systems operating in the velocity strength—zo'15' andK=1.

ening region(a), a choice suggested by extrapolation of [abo-jt ha5 not been studied beforand randomness is only intro-
ratory friction data to actual tectonic drift velociti¢44]. duced via the initial conditions, Eq&l) being deterministic.

driving force

sliding rate

Moreover, the dynamics in the strengthening regianis
qualitatively different from the well-studied dynamics in the

Figure 1 shows the driving forcgfig. 1(a)] and the slid-
ing rateg Fig. 1(b)] as a function of time for each block in a

softening region(b). In particular, if in the strengthening 44 hjock system. The sliding rates exhibit strongly intermit-
region the sliding ratéconsidered to be a fast variable, ent pehavior: quiescent periods of almost negligible kinetic
—0) is adiabatically eliminated in favor of the shear force gnergy alternate with active periods. The latter involves ei-
(friction dominates over inertjathe dynamics is determined iher the failure of a single block or many-block events that

by the time evolution of the shear forcek=2, ... Nj
_1),

fi
r7tfk:D(fl<+1+fk—1_ka)—f—+1+<7tfk|top, 3
SS

where the diffusion coefficient i®=K(1/fsc—1), fs the
steady-state force anﬁjfkhop is the corresponding toppling
rule (force redistribution For simplicity, we setf,=0 in
deriving Eq.(3). Equation(3) has ashort-wavelength insta-
bility, which leads to uphill diffusion; fofss>1, the diffu-

appear as rupture fronts propagating along the chain.

We investigate spatial correlations by defining the event
size as the total sliding displacement during a rupture,
namely the time integral of the sliding rates over the duration
of an event. The corresponding event-size probability density
for a different number of blocks is plotted in Fig. 2. Note that
for the larger systems the scaling region extends over two
orders of magnitude, and the absence of a peak at the high
end of the distributionno excess of large eventsas op-
posed to what was found with the original BK model. For
small systems No=16 and 40 single- and double-block

sion coefficient becomes negative. This is a consequence efvents may be identified at the low end of the distribution.
the competition between stress release by rigid sliding an@he scaling form of the event-size distribution arises from
stress relaxation by plastic deformation; physically, it hasthe dynamics of the system. The short-wavelength instabil-
been attributed to microfissuratiphl]. Our choice of simu- ity, a result of the introduction of plastic deformation, is
lation parameters ensures that the working point is in thiessential in determining the spatial distribution of critical
unstable region. Consequently, events do not have to be trigslocks (which fail if they encounter an evenaind stable
gered artificially; any small perturbation is amplified. Note blocks(which can absorb the shock and thus stop an g¢vent
that this instability is absent in the original BK modbknce, A scale-invariant distribution is obtained only when the spa-
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100 — . . - =1.25+0.1. This behavior is a manifestation of “flicker”
) "’*v‘v..,(.b 16 bl. noise, i.e., 1’ noise whereo is between Q(uncorrelated
= 101 ﬁ:‘“ \ 40 bl white noise@ and 2 (Brownian nois¢ In Fig. 3 the white
> E / - 100 bl. | 3 noise behavior at low frequencies is a finite-size effect,
= ! 250 bi. whereas the high frequency peaks can be identified with sig-
g 1 - = ] nals arising from single-block events. In contrast, the PSD of
:; 3 10:,,%.;.;_. E thg inding rate of one.typicgl blodlout of NO),.inset in Fig
= N4 o, 3, is dominated by white noisélat spectrum without a scal-
S 0.1; o ) *"‘ o ing region.
< ' A f\vﬁz. The scaling behavior of the PSD may be understood by
& o 01_'0-01 - A\ idealizing the time series as a sequence of quiescent and
' 001 01 1 10 E active intervals. The signal during the quiescent intervals, of
T T . durationt.s, is set to zero, whereas the signal during the
0.01 0.1 1

event size F

active intervals, of duratiot,,,, is approximated b)g(ton)
~t2,. Note thaty=0 corresponds to idealizing the time se-
ries by a binary series. TH@anomalous growth exponenty

FIG. 2. Event-size probability density for chains of 16, 40, 100,i5 getermined from the average event size for a given dura-

and 250 blocks. The total number of events was approximatel

50 000(100 blocks. Inset: finite-size scaling plot.

Yion. We found numericallf E(ton))~tLt? with y approxi-

mately 0.3. The probability distribution of the duration of

tial stiffness(increasing stifiness forces the system to behavé@Ctive periods,, was found to scale asty,” with a~1.8,
as a unit and the force droggas obtained from the friction and the probability distribution of the quiescent periqudg
law) are properly balanced: in that case the distribution doe¥/@s found to behave, for large intermission tintgg, as
not exhibit a pronounced peak for large events. _ ) )€ > System sSizf
Motivated by scaling arguments used in ordinary criticaltailed analysis{13] of the joint probability distribution of
phenomena the event-size probability density is replotted agvent size and event duration leads to the scaling relation
suming finite-size scaling, namely

p(E)dE~E P exp —E/Ng)dE.

~exp(—ty/7), wherer depends on the system size. A de-

a=L+7y.

Previous investigationg16] of intermittency in one-
dimensional maps attributed the low frequency PSD diver-
gence to the probability distribution of ordered intervals

The results are shown in the inset in Fig 2. The curves fof“laminar” in their terminology) under the assumption that
different system sizes fall on the same universal curve with #he disordered interval§‘chaotic” or “turbulent” bursts)
scaling exponenB=1.5+0.1, This is consistent with the were of zero duration. A generalization of their analysis to a
exponent expected from the Gutenberg-Richter reldtlih sequence of quiescent'disordered”) and active (“or-
Moreover, the argument of the exponential cutoff showsdered”) intervals of finite duration with the previously de-
scale invariance to be delimited only by finite-size effects. scribed probability distributions and strengfiig] gives the
Insight into the dynamics of the system is provided byscaling relationo=1+ v for 1<a<2. The numerically de-
studying temporal correlations. Figure 3 presents the poweermined exponents satisfy this scaling relation.
spectral densityPSD of the intermittent time series gener-  The different statistics of quiescent and active intervals
ated by the spatially averaged sliding ratge(t) may be rationalized as follows: quiescent intervals are expo-
=(1/N0)2iN°ei(t)] for two different system sizes. At inter- nentially distributed because they may be broken up by an

mediate frequenciebthe PSD scales a8(f)~f 7 with o active interval(with a finite probability, whereas active in-
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tervals (being highly correlatedare only influenced by the
system’s state at the edge of the propagating rugtlire A
similar conclusion was reached in an analysis of intermit-
tency (laminar-to-turbulence transitiprin terms of a one-
dimensional array ofliffusive coupled map lattices, where
the statistics of the orderedamina) domains were alge-
braic, while the disordere@urbulen} domains were expo-
nential[17].

The long-time(exponentigl behavior ofp.; implies that
large events are statistically independent and their occur-
rence follows Poisson statistics. Thus, the probability of oc-
currence of a large event in the model-generated time series
is independent of its history. This observation is corroborated
by the flat PSD of a single block: local measurements are
uncorrelatedin time); see, also, Ref18] for a discussion on
earthquake predictability. The origin of the loss of temporal

FIG. 3. Power spectral densitPSD) of the average-sliding-rate correlations is the short-wavelenght instability, which de-
time series for a 40- and a 100-block chain. The inset shows th&troys such correlationgnemory during the quiescent peri-
PSD of a single-block sliding rat@0-block chain.

ods. However, the short-time behavior pfi; was found to
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decay algebraically, a scaling law that is reminiscent ofmore importantly, by the diffusive coupling terms that give

Omori’'s law for the power-law decay of aftershocks. rise touphill diffusion (ii) a slow, but finite, time scalés-
The results shown in Figs. 2 and 3 imply that the dynam-sociated with the deterministic evolution of the forcés

ics of the system as described by the discretized equationgtained, the fast time scale having been adiabatically elimi-

(1) may be cast in terms of a CA algorithm similar to thosenated.

used to generate SOC states. In fact, Bakl. [2] identified We simulated the one-dimensional diffusive CA model

1/f noise as the hallmark of temporal correlations in SOCyjith parametersf(y;,, fmay) determined from the solution of

systems. This algorithm becomes apparent when the topplmgqs_ 1 K=1). We found that the CA model also exhibits

rule in the equation t_hat det_e_rmines the _time evolut_ion of thescaling; the event-size distribution scales with an exponent
shear force$Eqg. (3)] is specified. Numerical analysis of the B=1.5, in agreement with the results shown in Fig. 2. Pre-

dependence of thieblock shear forcd, , on the sliding rate limi : : .
. ) ) iminary results agree with our earlier observation ttega-
&, as described by Eq&l), suggests the following toppling tial) scale invariance occurs when a proper balance of force

T s socongi e " redsbUIONGNOGe Of v a10,)and force propagatr
(spatial stiffnes«K) is reached.
fe—fri— (Frnax— Fmin)» (5a) In summary, the slider-block realization of the creep-slip
model with velocity-softening instability and the associated
diffusive CA algorithm with threshold dynamics have re-
1= Feea t E(fmax_ Frnin) (5b) vealed a close relation between those apparently distinct con-
where A is the ratio of distributed to released forces, cepts. For particular choices of parameters, both descriptions
= 2K/(2K+1), andf,, can be related to the dynamic fric- of 'the system evolve to a scale-invgriant steady statg. The
tion force ¢ [13]. Hence, force redistribution is dissipative, €Xistence of such a state shows the importance of uphill dif-
becoming conservative in the continuum limit,—~c. Note ~ fusion in driving the system. Moreover, the CA model is
however, two important differences with previous CA mod- dissipative(for finite K) suggesting that, in one dimension,
els [19] used to describe SOC statds); For f<f,,, the local force conservation is not a necessary requirement to
dynamics is determined both by the external driving andobtain a scale-invariance steady ste26].
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