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Scale invariance and intermittency in a creep-slip model of earthquake faults
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The dynamics of a generalization of the one-dimensional, spatially discretized Burridge-Knopoff model
~slider-block model! is investigated numerically. Plastic deformation of the fault interface is considered in
addition to rigid sliding~creep-slip model!. The event-size distribution exhibits scale invariance (b51.5), as
does the power spectral density of the intermittent time series of the spatially averaged sliding rate (s51.3).
A diffusive cellular automaton model that reproduces the algebraic correlations in the event-size distribution in
the presence of dissipation is proposed.@S1063-651X~99!50906-9#

PACS number~s!: 05.45.2a, 46.55.1d, 47.20.Ky, 91.30.Px
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The suggestion by Bak and Tang@1# that threshold mod-
els, based on cellular automata~CA!, reproduce the
Gutenberg-Richter power-law distribution of energy relea
during earthquakes, triggered considerable interest in sim
models of earthquake dynamics. These CA models desc
the discrete dynamics of a system that evolves to a sc
invariant ~in space and time! statistical steady state. Suc
generic scale invariance has been coined self-organized
cality ~SOC! @2#.

An alternative approach to earthquake dynamics is ba
on a slider-block model, initially proposed by Burridge a
Knopoff ~BK! @3# and reintroduced by Carlson and Lang
~CL! @4#. Since then numerous slider-block models ha
been studied; cf. the extensive reference list in Ref.@5#. The
standard BK model describes the dynamics of a slo
driven slider-block chain in the presence of a nonlinear fr
tion exhibiting a velocity softening instability. Nakanishi@6#,
trying to bridge these apparently distinct approaches, p
posed a CA version of the CL model, whereas several
tempts have been made to provide a continuum descrip
of SOC @7#.

Numerical solutions of BK-like models have shown th
the system eventually settles into a periodic state of syst
size earthquakes@8,9#. Moreover, the use of an artificial ac
celeration term to trigger the dynamics has been questio
@9,10#; its introduction in numerical simulations is a cons
quence of the choice of the dynamic friction force~no creep
region at low velocities!. The absence of a creep region h
two other consequences: the working point of the system
determined by the imposed driving~tectonic! velocity is in
the velocity softening region of the friction force, and it n
cessitates the use of a multivalued friction force at zero s
ing velocity. These criticisms have led to questioning t
relevance of slider-block models and the associated S
models to earthquake dynamics.

Since the dynamic friction force is an essential ingredi
of all BK-like models, we recently proposed a generalizat
~henceforth referred to as creep-slip model! of the original
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BK model that renders the phenomenological description
friction consistent@11#. Specifically, fault creep is taken int
account by introducing an additional internal variable; und
the imposed tectonic driving, the fault responds by a com
nation of rigid translation~sliding! and plastic displacemen
~irreversible deformation of some boundary layer of t
fault!. Herein we show numerically that the introduction
plastic deformation~and hence the introduction of a chara
teristic time scale of fault aging due to accommodation
asperities! in the original BK model removes some of th
previously mentioned criticisms, and the simulations prov
insight into the associated scaling and intermittency in o
dimensional dynamical systems.

In Ref. @11# a set of coupled partial differential equation
for the shear forces~plastic deformation rates! and the slid-
ing rates were derived. In this work we analyze numerica
the dynamics of the corresponding slider-block model. Fo
one-dimensional discrete array ofN0 blocks, in a spatially
discretized form~the second order gradient was discretiz
by the usual cental, three-point finite difference formu!
and, expressed in dimensionless form, the dynamics is
scribed by 2N0 coupled ordinary differential equations

e2] tek5 f k2f@ v̄~ek1gk!#, ~1a!

] t f k5K~ek111ek2122ek!2~ek1gk!11, ~1b!

for k52, . . . ,N021, and free boundary conditionsk
51,N0. Hereek is the dimensionless sliding rate of blockk,
f k the shear force,gk the plastic deformation rate, andf the
dynamic friction force. Apart from the stiffness parameterK
~which arises from the spatial discretization! and the param-
eters that define the friction force, the model equations
pend onv̄, the tectonic drift velocity, ande. The latter, ex-
pressed in terms of the original parameters is the ratio of
natural frequency of transversal oscillations of individu
blocks to the plastic relaxation time; it is a measure of~tem-
poral! stiffness of the system. The plastic deformation rate
related to the shear forcef k and the yield forcef y according
to the ~assumed! linear constitutive law

gk5H sgn~ f k!~ u f ku2 f y! for u f ku. f y

0 otherwise.
~2!
R6231 ©1999 The American Physical Society
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Equation ~1a! expresses the balance of forces, and
~1b! expresses the time evolution of the driving force; t
first term arises from compression/tension, the second f
elastic shear, the third is the~assumed! linear force relax-
ation, and the last is the external driving. The original B
model@3# is recovered by takingf y larger than the maximum
friction force. In this case Eqs.~1! become identical to thos
reported in Ref.@12#.

The discretized equations approximate the original c
tinuum equations if the characteristic length introduced
the discretization,K21/2, is less than the smallest ruptu
lengths of interest. However, excessive computation tim
render the continuum limit (K→`) difficult to attain.

The introduction of plastic deformation~and the corre-
sponding time scale of fault aging! justifies a three-stage dy
namic friction lawf(x): ~a! at very low displacement ve
locities fault accommodation is fast enough to maint
optimum contact surfaces~velocity strengthening!; ~b! at in-
termediate velocities fault accommodation is incomplete
cause the fault aging rate is comparable to the displacem
rate~velocity softening!; and~c! at high velocities aging be
comes negligible and inertia dominates~velocity strengthen-
ing, again!. For the simulations these three stages were
proximated as follows:~a! a linear velocity strengthening
region, i.e., a region of positive velocity sensitivity;~b! a
region of negative velocity sensitivity~inverse decay!; and
~c! an inertia regime (x→`) with linear positive velocity
sensitivity, again. For the precise functional form cf. R
@13#

We simulated numerically the dynamics of the chains
N0516, 40, 100, and 250 blocks. The numerical schem
based on a variable-order, variable-step method implem
ing the backward differentiation formula. The results to
reported refer to systems operating in the velocity streng
ening region~a!, a choice suggested by extrapolation of lab
ratory friction data to actual tectonic drift velocities@14#.
Moreover, the dynamics in the strengthening region~a! is
qualitatively different from the well-studied dynamics in th
softening region~b!. In particular, if in the strengthening
region the sliding rate~considered to be a fast variable,e
→0) is adiabatically eliminated in favor of the shear for
~friction dominates over inertia!, the dynamics is determine
by the time evolution of the shear forces, (k52, . . . ,N0
21),

] t f k5D~ f k111 f k2122 f k!2
f k

f ss
111] t f ku top, ~3!

where the diffusion coefficient isD5K(1/f ss21), f ss the
steady-state force and] t f ku top is the corresponding toppling
rule ~force redistribution!. For simplicity, we setf y50 in
deriving Eq.~3!. Equation~3! has ashort-wavelength insta
bility, which leads to uphill diffusion; forf ss.1, the diffu-
sion coefficient becomes negative. This is a consequenc
the competition between stress release by rigid sliding
stress relaxation by plastic deformation; physically, it h
been attributed to microfissuration@11#. Our choice of simu-
lation parameters ensures that the working point is in
unstable region. Consequently, events do not have to be
gered artificially; any small perturbation is amplified. No
that this instability is absent in the original BK model~hence,
.
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it has not been studied before! and randomness is only intro
duced via the initial conditions, Eqs.~1! being deterministic.

Figure 1 shows the driving forces@Fig. 1~a!# and the slid-
ing rates@Fig. 1~b!# as a function of time for each block in
40-block system. The sliding rates exhibit strongly interm
tent behavior: quiescent periods of almost negligible kine
energy alternate with active periods. The latter involves
ther the failure of a single block or many-block events th
appear as rupture fronts propagating along the chain.

We investigate spatial correlations by defining the ev
size as the total sliding displacement during a ruptu
namely the time integral of the sliding rates over the durat
of an event. The corresponding event-size probability den
for a different number of blocks is plotted in Fig. 2. Note th
for the larger systems the scaling region extends over
orders of magnitude, and the absence of a peak at the
end of the distribution~no excess of large events!, as op-
posed to what was found with the original BK model. F
small systems (N0516 and 40! single- and double-block
events may be identified at the low end of the distributio
The scaling form of the event-size distribution arises fro
the dynamics of the system. The short-wavelength insta
ity, a result of the introduction of plastic deformation,
essential in determining the spatial distribution of critic
blocks ~which fail if they encounter an event! and stable
blocks~which can absorb the shock and thus stop an eve!.
A scale-invariant distribution is obtained only when the sp

FIG. 1. Driving forces~top! and sliding rates~bottom! for a

40-block chain. The parameters aree50.05, f max53, f y52, v̄
50.15, andK51.
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tial stiffness~increasing stiffness forces the system to beh
as a unit! and the force drop~as obtained from the friction
law! are properly balanced: in that case the distribution d
not exhibit a pronounced peak for large events.

Motivated by scaling arguments used in ordinary critic
phenomena the event-size probability density is replotted
suming finite-size scaling, namely

p~E!dE;E2b exp~2E/N0!dE. ~4!

The results are shown in the inset in Fig 2. The curves
different system sizes fall on the same universal curve wi
scaling exponentb51.560.1, This is consistent with the
exponent expected from the Gutenberg-Richter relation@15#.
Moreover, the argument of the exponential cutoff sho
scale invariance to be delimited only by finite-size effects

Insight into the dynamics of the system is provided
studying temporal correlations. Figure 3 presents the po
spectral density~PSD! of the intermittent time series gene
ated by the spatially averaged sliding rate@ ē(t)
5(1/N0)( i

N0ei(t)# for two different system sizes. At inter
mediate frequenciesf the PSD scales asS( f ); f 2s with s

FIG. 2. Event-size probability density for chains of 16, 40, 10
and 250 blocks. The total number of events was approxima
50 000~100 blocks!. Inset: finite-size scaling plot.

FIG. 3. Power spectral density~PSD! of the average-sliding-rate
time series for a 40- and a 100-block chain. The inset shows
PSD of a single-block sliding rate~40-block chain!.
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51.2560.1. This behavior is a manifestation of ‘‘flicker’
noise, i.e., 1/f s noise wheres is between 0~uncorrelated
white noise! and 2 ~Brownian noise!. In Fig. 3 the white
noise behavior at low frequencies is a finite-size effe
whereas the high frequency peaks can be identified with
nals arising from single-block events. In contrast, the PSD
the sliding rate of one typical block~out of N0), inset in Fig
3, is dominated by white noise~flat spectrum without a scal
ing region!.

The scaling behavior of the PSD may be understood
idealizing the time series as a sequence of quiescent
active intervals. The signal during the quiescent intervals
duration toff , is set to zero, whereas the signal during t

active intervals, of durationton, is approximated byē(ton)
;ton

g . Note thatg50 corresponds to idealizing the time s
ries by a binary series. The~anomalous! growth exponentg
is determined from the average event size for a given du
tion. We found numericallŷE(ton)&;ton

11g with g approxi-
mately 0.3. The probability distribution of the duration
active periodspon was found to scale as;ton

2a with a'1.8,
and the probability distribution of the quiescent periodspoff
was found to behave, for large intermission timestoff , as
;exp(2toff /t), wheret depends on the system size. A d
tailed analysis@13# of the joint probability distribution of
event size and event duration leads to the scaling rela
a5b1g.

Previous investigations@16# of intermittency in one-
dimensional maps attributed the low frequency PSD div
gence to the probability distribution of ordered interva
~‘‘laminar’’ in their terminology! under the assumption tha
the disordered intervals~‘‘chaotic’’ or ‘‘turbulent’’ bursts!
were of zero duration. A generalization of their analysis to
sequence of quiescent~‘‘disordered’’! and active ~‘‘or-
dered’’! intervals of finite duration with the previously de
scribed probability distributions and strengths@13# gives the
scaling relations511g for 1,a,2. The numerically de-
termined exponents satisfy this scaling relation.

The different statistics of quiescent and active interv
may be rationalized as follows: quiescent intervals are ex
nentially distributed because they may be broken up by
active interval~with a finite probability!, whereas active in-
tervals ~being highly correlated! are only influenced by the
system’s state at the edge of the propagating rupture@17#. A
similar conclusion was reached in an analysis of interm
tency ~laminar-to-turbulence transition! in terms of a one-
dimensional array ofdiffusive coupled map lattices, wher
the statistics of the ordered~laminar! domains were alge-
braic, while the disordered~turbulent! domains were expo-
nential @17#.

The long-time~exponential! behavior ofpoff implies that
large events are statistically independent and their oc
rence follows Poisson statistics. Thus, the probability of
currence of a large event in the model-generated time se
is independent of its history. This observation is corrobora
by the flat PSD of a single block: local measurements
uncorrelated~in time!; see, also, Ref.@18# for a discussion on
earthquake predictability. The origin of the loss of tempo
correlations is the short-wavelenght instability, which d
stroys such correlations~memory! during the quiescent peri
ods. However, the short-time behavior ofpoff was found to
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decay algebraically, a scaling law that is reminiscent
Omori’s law for the power-law decay of aftershocks.

The results shown in Figs. 2 and 3 imply that the dyna
ics of the system as described by the discretized equat
~1! may be cast in terms of a CA algorithm similar to tho
used to generate SOC states. In fact, Baket al. @2# identified
1/f noise as the hallmark of temporal correlations in SO
systems. This algorithm becomes apparent when the topp
rule in the equation that determines the time evolution of
shear forces@Eq. ~3!# is specified. Numerical analysis of th
dependence of thek-block shear forcef k , on the sliding rate
ek , as described by Eqs.~1!, suggests the following toppling
rule: when the shear force on blockk exceedsf max ~the fric-
tion force maximum! it is redistributed according to

f k→ f k2~ f max2 f min!, ~5a!

f k61→ f k611
D

2
~ f max2 f min!, ~5b!

where D is the ratio of distributed to released forces,D
52K/(2K11), andf min can be related to the dynamic fric
tion forcef @13#. Hence, force redistribution is dissipativ
becoming conservative in the continuum limit,K→`. Note
however, two important differences with previous CA mo
els @19# used to describe SOC states:~i! For f , f max, the
dynamics is determined both by the external driving a
s-
n-

e

f

-
ns

ng
e

-

,

more importantly, by the diffusive coupling terms that giv
rise touphill diffusion; ~ii ! a slow, but finite, time scale~as-
sociated with the deterministic evolution of the forces! is
retained, the fast time scale having been adiabatically eli
nated.

We simulated the one-dimensional diffusive CA mod
with parameters (f min , f max) determined from the solution o
Eqs. 1 (K51). We found that the CA model also exhibi
scaling; the event-size distribution scales with an expon
b51.5, in agreement with the results shown in Fig. 2. P
liminary results agree with our earlier observation that~spa-
tial! scale invariance occurs when a proper balance of fo
redistribution~choice off min and f max) and force propagation
~spatial stiffnessK) is reached.

In summary, the slider-block realization of the creep-s
model with velocity-softening instability and the associat
diffusive CA algorithm with threshold dynamics have r
vealed a close relation between those apparently distinct
cepts. For particular choices of parameters, both descript
of the system evolve to a scale-invariant steady state.
existence of such a state shows the importance of uphill
fusion in driving the system. Moreover, the CA model
dissipative~for finite K) suggesting that, in one dimensio
local force conservation is not a necessary requiremen
obtain a scale-invariance steady state@20#.
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